

Application
Programming (CO453)

Part A Weeks 1‐3

 Console & Windows
Programming Using C#

 Page 17 of 28

C# Console and Windows Programming using Visual C#.Net

Project Unit: C# Project:
The Scissors-Paper-Stone Game

The Basic Rules (playing against the computer)
=====================================
 The player chooses either: Scissors, Paper or Stone
 The computer also chooses one of these at random
 There are various possible results:

 If player and computer choose the same thing, the result is a Draw.
 Scissors win against Paper (because scissors cut paper)
 Scissors lose against Stone (because stone blunts scissors)
 Paper wins against Stone (because paper wraps round stone)

This week we shall begin a slightly larger exercise .. the Scissors-Paper-Stone Game.
You should know the rules of the game before you start:

Starting the Project
 This project has already been started for you but it is incomplete and needs a lot of work to finish it.
 Start by opening the SPSProject and run it .. set the keyboard Caps Lock ON and when you are

asked for your choice, type: SCISSORS.
 The computer will now make its random

choice and you should then see a crude
picture of your choice and a result that is
either:

o a DRAW or
o NOT YET DETERMINED

(depends what the computer picked)
 Run the program again and try choosing

PAPER or STONE
 Examine the existing code for the

program (see later pages)
 Clearly the program is nowhere near

finished so you should try adding more
code to achieve the following tasks:

 Page 18 of 28

C# Console and Windows Programming using Visual C#.Net

Basic Project

 Change the background and foreground colours to your own choice.
 Modify the program so that all the computer choices are described correctly, instead of "NOT YET

DETERMINED" as above (e.g. The computer chose STONE)
 Get the program to show the result correctly for all possible situations

(e.g. THE COMPUTER WINS or YOU WIN) .. instead of "not yet determined" as above.
 Get the program to draw the computer choice as well as the player choice.
 Add a variable for the player name and add code to pick up the name at the start of the program.
 The player name should be used wherever possible e.g

What is your choice, Brian?
Brian picked SCISSORS. The computer picked PAPER
Brian WON!! Because Scissors Cut Paper.

 Get the program to work for both uppercase and lowercase inputs
e.g. it should work if you choose SCISSORS or scissors or Scissors, etc.

Extension Work 1

 You are to use a scoring system in the game so you must add 2 variables for the
ComputerScore and the PlayerScore.

 Implement the scoring as follows:
o 2 points for a WIN
o 1 point each for a DRAW

 Add a new method called showScores()
which prints the scores for the player and
computer as shown here:

 Now get the game play to repeat until one of the
scores reaches 20.

 Create a new method called finish() which is
called when the game loop ends.

 The finish() method should clear the screen and
then print the results as shown here.

 Use an appropriate picture:
o ThumbsUp (player win)
o ThumbsDown (computer win)
o Smile (draw)

 Note: you will find included some appropriate
draw methods for you to use.

Extension Work 2

 Make a copy of your complete Game folder so
you don’t lose your original game.

 Create a new Class in your project and call this
Pictures

 Remove all the draw methods from your Game
class and put them into your Pictures class.

 Get the game to work again using pictures from
the Pictures class .. you will have to make several changes e.g. the draw methods should be public
instead of private and you will need to create a Pictures object within the Game class.

 Most of the pictures can be positioned anywhere on the screen, but some of them can’t .. can you
modify these methods so they too can be drawn anywhere?

 Page 19 of 28

C# Console and Windows Programming using Visual C#.Net

 class Game
 {

string compChoice;
string playerChoice;
Random randy;

public static void Main() // program starts executing here
{
 Game myGame = new Game (); // create a new Game object
 myGame.play(); // call its play method
}

public Game() // game constructor
{
 randy = new Random(); // create a new Random object
}

public void play() // play the game (unfinished)
{

setupScreen();
introduction();

 getPlayerChoice();
 getComputerChoice();
 drawPlayerChoice();
 printChoices();
 showResult();
 Console.ReadKey(); // wait for a key press
}

// PTO

private void setupScreen()
{
 Console.Title = " The Great Scissors-Paper-Stone Game";

 Console.SetWindowSize(100, 36);
 Console.SetBufferSize(100, 36)

 Console.BackgroundColor = ConsoleColor.Red;
 Console.ForegroundColor = ConsoleColor.White;
 Console.Clear(); // clear screen in chosen colour
}

private void introduction()
{
 Console.WriteLine("\tPlay the Scissors Paper Stone Game");
 Console.WriteLine("\t============================");
}

private void getPlayerChoice()
{
 Console.WriteLine("\n\tWhat is your choice ?");
 Console.Write("\tScissors Paper or Stone : ");
 playerChoice = Console.ReadLine();
}

 Page 20 of 28

C# Console and Windows Programming using Visual C#.Net

// Game class continued

private void getComputerChoice() // unfinished
{
 int num;
 num = randy.Next(3); // pick a random number (0, 1 or 2)
 if (num == 0)
 {
 compChoice = "SCISSORS";
 }
 else
 {
 compChoice = "NOT YET DETERMINED";
 }
}

private void printChoices()
{
 Console.WriteLine("\n\t You picked " + playerChoice);
 Console.WriteLine("\tThe computer has picked " + compChoice);
}

private void drawScissors(int x, int y) // draw at x, y
{

Console.SetCursorPosition(x, y++); // set start position then
add 1 to y

private void drawPlayerChoice()
{
 if (playerChoice == "SCISSORS")
 {
 drawScissors(10, 5); // draw Scissors at 10, 5
 }
 else if (playerChoice == "PAPER")
 {
 drawPaper(10, 5);
 }
 else if (playerChoice == "STONE")
 {
 drawStone(10, 5);
 }
}

private void showResult()
{
 if (playerChoice == compChoice)
 {
 Console.WriteLine("\n\tA DRAW!!");
 }
 else
 {
 Console.WriteLine("\n\n\t Result not yet Determined !!!");
 }
}

 Page 21 of 28

C# Console and Windows Programming using Visual C#.Net

SPS Game Project Deliverables
==========================
Include the following in your logbook:

 Fully Commented Source Code
 Sample Screen shots
 Completed Test Plan
 Class Diagram(s)
 Commentary on success (or otherwise)

 Page 22 of 28

C# Console and Windows Programming using Visual C#.Net

Console Screen Instructions
Console.BackgroundColor = ConsoleColor.Blue; // set a background colour
Console.ForegroundColor = ConsoleColor.Yellow; // set a foreground colour
Console.Clear () ; // clear the screen
Console.SetCursorPosition(5, 10); // x,y position on screen

Pausing the Program
Console.ReadKey () ; // waits for a key to be pressed

Delay for a time
System.Threading.Thread.Sleep (1000);
 // gives a delay of 1 second (1000 milliseconds)

The Math.Pow() function
Use the Math.Pow() function to return the power of a number: e.g.

cube = Math.Pow(number, 3);
square = Math.Pow(number, 2);

Converting a string into upper case
choice = choice.ToUpper() ;

 converts the string choice into upper case (e.g. yes becomes YES)

Random Number Generation
 First we must create a new object from the Random class .. e.g.

Random rand = new Random(); // creates a new object called rand
 Then you can use rand.Next() to pick the next number e.g.

 // pick a random number between 0 and 5 and store in an int variable n
// add 1 to get a number between 1 and 6
n = rand.Next(6) + 1; // puts either 1,2,3,4,5 or 6 into n
(or use n = rand.Next() % 6 + 1)

Output of Decimal Places
 If you want to print a double type of variable (num) to 2 decimal places:

Console.WriteLine("The answer is " + num.ToString("0.00"));

Alternative Way of Printing Variables
 Instead of :

Console.WriteLine("The total of " + n1 + " and " + n2 + " is " + total);
 You could write:
Console.WriteLine("The total of {0} and {1} is {2}", n1, n2, total);
// n1, n2 and total are put in positions {0} {1} and {2} respectively

 or an alternative if you want 2 decimal places:
Console.WriteLine("The total of {0:F2} and {1:F2} is {2:F2}", n1, n2, total);
// this formats all the numbers to Fixed 2 decimal places

Inputting Numbers
 First input into a string variable e.g.

input = Console.ReadLine();
 Then convert this string to the right type and pop into a variable e.g.

num = Convert.ToDouble(input); or
num = Convert.ToInt32(input); etc.

Some Extra Useful C# Stuff

 Page 23 of 28

C# Console and Windows Programming using Visual C#.Net

Appendix A: The Basics

1. Console Input and Output
 name = Console.ReadLine(); .. store input in a name variable (defined as string)
 Console.WriteLine("I am " + name); .. output a message with text joined to a name variable
 num1 = Convert.ToDouble (Console.ReadLine()); .. enter string and convert to a double
 num2 = Convert.ToInt32 (Console.ReadLine()); .. enter string and convert to an integer

2. Variables
 int count; .. define a variable called count to store an integer number
 double num; .. define a variable called num to store a double (decimal) number
 string name; .. define a variable called name to store a string (text or words)

3. Assignments to Variables (must be defined first)
 count = 0; .. put 0 into the count variable (previously defined as int)
 num = 5.67; .. put 5.67 into the num variable (previously defined as double)
 name = "Fred Bloggs"; .. put these 11 characters in the name variable (defined as string)

4. Calculations
 count ++; .. add 1 to the value of the count variable
 count --; .. subtract 1 from the value of the count variable
 count = count + 3; .. add 3 to value of the count variable (or use count += 3;)
 count = count - 6; .. subtract 6 from the count variable (or use count -= 6;)
 av = (num1 + num2 + num3 + num4) / 4; .. work our average of 4 numbers
 tax = bill * 17.5 / 100; .. work out 17.5 percent tax on your bill

5. Loops (iteration)
 a. The while loop

 an infinite loop

b. The for loop

int count = 0; // initialise a loop counter to zero

while (count < 10) // continue while loop counter is less than 10
{
 Console.WriteLIne (“The count is " + count); // repeated
 count ++; // keep loop going by adding 1 to counter
}

// initialise loop counter; continue while count less than 10 ; add 1 at end of loop

for (int count = 0; count < 10; count ++)
{
 Console.WriteLine (“The count is " + count); // repeated 10 times
}

while (true) // continue the while loop forever
{
 Console.WriteLIne ("Yippeeee!!"); // repeated forever
}

 Page 24 of 28

C# Console and Windows Programming using Visual C#.Net

 c. The do while loop

6. Selection
 a. The if statement

 b. The if else statement

 c. The switch statement

7. Conditions
 (a == b) .. a is equal to b ?
 (a > b) .. a is greater than b ?
 (a < b) .. a is less than b ?
 (a >= b) .. a is greater or equal to b ?
 (a <= b) .. a is less than or equal to b ?
 (a != b) .. a is NOT equal to b ?

int count = 0; // initialise a loop counter to zero

do
{

count ++; // keep loop going by adding 1 to loop counter
Console.WriteLine (“The count is " + count); // repeated message

}
while (count < 10); // continue while loop counter is less than 10

 if (count == 4) // if count is equal to 4
 {
 Console.WriteLine (“We are half way");
 }

 if (count >= 4) // if count is greater or equal to 4
 {
 Console.WriteLine (“We have reached half way");
 }
 else
 {
 Console.WriteLine ("We are NOT half way yet");

}

 switch(count) // use count value to switch to various cases below:
 {
 case 1: // i.e. if count value = 1
 Console.WriteLine (“We are just starting"); break;
 case 2: case 3: case 4:
 Console.WriteLine (“We are on our way"); break;
 case 4:
 Console.WriteLine (“We are half way"); break;
 default:

// do nothing for any other values break;

 Page 25 of 28

C# Console and Windows Programming using Visual C#.Net

8. Multiple Conditions
 (a == b || a == c) .. a is equal to b OR a is equal to c ?
 (a == b || a == c || a == d) .. a is equal to b OR a is equal to c OR a is equal to d ?
 (a == b && a == c) .. a is equal to b AND a is equal to c ?
 (a <= 100 && a >= 0) .. a is less than or equal to 100 AND a is greater or equal to 0 ?

9. Classes, Objects and Methods

 // this defines a simple class Meal which has one variable, one method, one constructor

10. Methods with parameters
 this defines a method setTax()

which has 1 parameter (amount)
and returns a double value

 this method is defined inside a
class e.g the Meal class above

 to use it, you can 'call' it like this:
 vat = myMeal.setTax(Bill); // assume myMeal is the object created from Meal

this passes the value of Bill to the method and picks up a returned tax value from it.

11. try/catch (simple version : to trap errors or exceptions)
 try
 {
 // enter instructions to be checked here
 }
 catch
 {
 // error message display here
 }

 public double setTax(double amount)
 {
 double taxAmount; // local variable

taxAmount = amount * 17.5/100;
return taxAmount;

 }

class Meal // define a class called Meal
{
 private string food; // the class has one class variable (attribute or field)

public static void Main() // program starts executing here
{
 Meal myMeal = new Meal(); // create a new myMeal object

 myMeal.getFood(); // call the object’s getFood() method
 }

 public Meal() // this is the Meal class constructor
 {
 food = "Fish and Chips"; // this sets the default food
 }

 public void getFood() // define a method getFood()which returns nothing
(void)

{

 Page 26 of 28

C# Console and Windows Programming using Visual C#.Net

 Assessment of CO453 Application Programming

1. The module is assessed by coursework that consists of a series of directed study exercises and

programming projects that must be recorded in a logbook.

2. The logbook must be an e-book and should contain your designs, algorithms, test plans, source

code and results of your work.

3. The directed study includes independent study tasks and programming projects.

4. The classwork component of the directed study is assessed each week in your practical sessions.

You MUST be observed doing the classwork in the computer laboratories during these timetabled

sessions. You must record your classwork in a logbook and this will be presented for inspection at

designated times. Your attendance and achievement will be recorded weekly.

5. The independent component of the directed study is your own unaided work. This work must be

recorded in your logbook. The independent directed study is assessed when logbooks are

submitted

6. The programming projects are your own unaided work and must be recorded in your logbook. They

are assessed at various times during the timetabled practical session.

7. The assessed directed study is contained in several directed study packs.

The weighting of the assessment to the final grade will be in the order of the following:

100%: C# Console Independent Study (Units 4 & 5), C# Console Project

C# Console Independent Study (Units 4 & 5): 70%

C# Console Project: 30%

Log Books
For the assignment you should submit (unless otherwise
instructed):

 All attempted independent studies and project tasks
 Clearly numbered Task headings
 Simple description of task(s)
 Sample Screen Shots
 Fully commented Source code of relevant sections using

highlighter pen to show added code where necessary
 Comments on problems encountered etc.

 Page 27 of 28

C# Console and Windows Programming using Visual C#.Net

Grade related criteria for Programming - CO453

A

Where the student has demonstrated clear evidence of an excellent understanding of the theories and
principles together with a high degree of analytical accuracy, good design skills, implementing fully
tested solutions that show reliability, maintainability, readability and minimal complexity and correct
form of presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will normally be expected to
attend the lecture and practical sessions and attempt at least 85% of independent study for each
week.

B

Where the student has demonstrated clear evidence of a good understanding of the theories and
principles together with a good analytical ability, good design skills, implementing solutions that show
reliability, maintainability, readability and minimal complexity and correct form of presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will normally be expected to
attend the lecture and practical sessions and attempt at least 75% the independent study for each
week.

C

Where the student has demonstrated a reasonable understanding of the theories and principles
together with a reasonable analytical ability, design skills, implementing solutions that appreciate the
need for reliability, maintainability, readability and minimal complexity and reasonable presentation
skills.
To acquire the knowledge and skills to demonstrate the above the student will normally be expected to
attend the lecture and practical sessions and attempt at least 66% of the independent study for each
week.

D

Where the student has demonstrated an understanding of the theories and principles of analysis,
design, implementation and presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will normally be expected to
attend the lecture and practical sessions and attempt at least 50% of the independent study for each
week.

E

Where the student has made a genuine attempt to acquire the knowledge and skills but requires
further application and study to demonstrate an understanding of the theories and principles of
analysis, design, implementation and presentation skills.
In order to demonstrate a genuine attempt the student will normally be expected to attend the lecture
and practical sessions and attempt at least 40% of the independent study.

F

Where the student has clearly not acquired sufficient knowledge and skills and not attempted or coped
with the directed study with any degree of competence regarding theories, principles, analysis, design,
and implementation and presentation skills
or
where the student has NOT attended for assessment
or
where the student has copied work from an alternative source.

 Page 28 of 28

C# Console and Windows Programming using Visual C#.Net

Module Name and code Application Programming CO453

Staff: Richard Jones, Richard Mather, Carlo Lusuardi & Nick Day
Learning Outcomes:

 Analyse a simple requirement in a structured manner
 Design, document, implement and test reliable, maintainable programs as solutions to simple

problems
 Use structured techniques of design and implementation and good documentation practice.
 Use software development tools.

Teach
WK

Uni
WK

LECTURE/TUTORIAL PRACTICAL

1 18 C# (Console) 4 Methods and Parameters C# Directed Study Unit 4

2 19 C# (Console) 5 Arrays C# Directed Study Unit 5

3 20 C# (Console) The Project C# Directed Study Project Unit

4 21 Workshop week

5 22 Windows C#1 Introduction & Splash Screen C# Directed Study Unit 1

6 23 Windows C#2 SPS Game C# Directed Study Unit 2

7 24 Windows C#3 Other .NET Controls C# Directed Study Unit 3

8 25 Windows C#4 Multiform projects C# Directed Study Unit 4

26-
28

Spring Recess – (Easter)

10 29 Workshop

11 30 Windows C#5 Animation C# Directed Study Unit 5

12 31 Windows C#6 Graphics C# Directed Study Unit 6

13 32 Windows C#7 Web Programming C# Directed Study Unit 7

14 33 Windows C#8 The .Net Project C# Directed Study Unit 8

15 34 Workshop

28 ** C# Windows Log Book hand-in **

Course Texts:
Comprehensive Course Notes are provided
 Bradley & Millspaugh, Programming in C#, 2010, pub: McGraw Hill
 Deitel & Deitel, Visual C# 2010 How to Program, 2011, pub: Pearson

